1) Calculate the dot product for each pair.
a)

b)

2) Calculate the dot product for each pair of vectors. $\theta$ is the angle between the vectors when they are placed tail to tail.
a) $|\vec{u}|=7,|\vec{v}|=12$, and $\theta=47^{\circ}$
b) $|\vec{s}|=520,|\vec{t}|=745$, and $\theta=135^{\circ}$
3) Calculate the dot product of each pair of vectors.
a) $\vec{a}=[5,8], \vec{b}=[-2,1]$
b) $\vec{c}=[-1,8], \vec{d}=[3,-3]$
c) $\vec{l}=2 \hat{\imath}-3 \hat{\jmath}, \vec{m}=-9 \hat{\imath}+4 \hat{\jmath}$
d) $\vec{u}=-6 \hat{\imath}+7 \hat{\jmath}, \vec{v}=3 \hat{\imath}-2 \hat{\jmath}$
4) Decide whether the following expressions have meaning or not. If not, explain why.
a) $\vec{u} \cdot(\vec{v} \cdot \vec{w})$
b) $|\vec{u} \cdot \vec{v}|$
c) $\vec{u}(\vec{v} \cdot \vec{w})$
d) $|\vec{u}|^{2}$
e) $\vec{v}^{2}$
f) $(\vec{u} \cdot \vec{v})^{2}$
5) Let $\vec{a}=[1,-2], \vec{b}=[2,5]$, and $\vec{c}=[4,-1]$. Evaluate the following if possible. If not possible, explain why not.
a) $\vec{a} \cdot(\vec{b}+\vec{c})$
b) $(\vec{a}+\vec{b}) \cdot \vec{c}$
c) $(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{c})$
d) $(3 \vec{a}+2 \vec{b}) \cdot(4 \vec{a}-\vec{b})$
e) $\vec{a} \cdot \vec{b} \cdot \vec{c}$
f) $\vec{a} \cdot \vec{b}+\vec{a} \cdot \vec{c}$
g) $4 \vec{b} \cdot(-2 \vec{c})$
h) $(\vec{a}+\vec{b}) \cdot \vec{c}$
6) Determine a value of $t$ so that $\vec{u}=[9, t]$ and $\vec{v}=[-16, t]$ are perpendicular.
7) Find a vector that is perpendicular to $\vec{a}=[3,-1]$. Verify that the vectors are perpendicular.
8) Which of the following is a right-angled triangle? Identify the right angle in that triangle.

- $\triangle A B C$ for $A(3,1), B(-2,3)$, and $C(5,6)$
- $\quad \Delta S T U$ for $S(4,6), T(-3,7)$, and $U(-5,-4)$

```
ANSWER KEY:
1)a) -3900 b) 31892.76
2)a) 57.29 b) -273 933.17
3)a) -2 b) -27 c) -30 d) -32
4)a) no, you cannot dot a vector with a scalar b) yes c) yes d) yes e) no, you cannot multiply vectors f) yes
5)a) -2 b) 9 c) 6 d) -38 e) not possible- you cannot dot a vector with a scalar f) -2 g) -24 h) 9
6) }t=12,-1
7) Answers may vary: [ -1, -3], [1,3], check using the dot product
8) }\triangleABC\mathrm{ is a right triangle; the right angle is }\angleBA
```

