

1) Calculate the dot product for each pair.



- 2) Calculate the dot product for each pair of vectors.  $\theta$  is the angle between the vectors when they are placed tail to tail.
- **a)**  $|\vec{u}| = 7$ ,  $|\vec{v}| = 12$ , and  $\theta = 47^{\circ}$  **b)**  $|\vec{s}| = 520$ ,  $|\vec{t}| = 745$ , and  $\theta = 135^{\circ}$

3) Calculate the dot product of each pair of vectors.

**a)**  $\vec{a} = [5, 8], \vec{b} = [-2, 1]$ **b)**  $\vec{c} = [-1, 8], \vec{d} = [3, -3]$ 

c)  $\vec{l} = 2\hat{\imath} - 3\hat{\jmath}$ ,  $\vec{m} = -9\hat{\imath} + 4\hat{\jmath}$ d)  $\vec{u} = -6\hat{\imath} + 7\hat{\jmath}$ ,  $\vec{v} = 3\hat{\imath} - 2\hat{\jmath}$  4) Decide whether the following expressions have meaning or not. If not, explain why.

a)  $\vec{u} \cdot (\vec{v} \cdot \vec{w})$  b)  $|\vec{u} \cdot \vec{v}|$  c)  $\vec{u} (\vec{v} \cdot \vec{w})$  d)  $|\vec{u}|^2$  e)  $\vec{v}^2$  f)  $(\vec{u} \cdot \vec{v})^2$ 

**5)** Let  $\vec{a} = [1, -2]$ ,  $\vec{b} = [2, 5]$ , and  $\vec{c} = [4, -1]$ . Evaluate the following if possible. If not possible, explain why not.

**a)**  $\vec{a} \cdot (\vec{b} + \vec{c})$  **b)**  $(\vec{a} + \vec{b}) \cdot \vec{c}$ 

**c)** 
$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{c})$$
 **d)**  $(3\vec{a} + 2\vec{b}) \cdot (4\vec{a} - \vec{b})$ 

| e) $\vec{a} \cdot \vec{b} \cdot \vec{c}$ |
|------------------------------------------|
|------------------------------------------|

**f**)  $\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ 

**g)**  $4\vec{b} \cdot (-2\vec{c})$ 

**h)**  $(\vec{a} + \vec{b}) \cdot \vec{c}$ 

**6)** Determine a value of t so that  $\vec{u} = [9, t]$  and  $\vec{v} = [-16, t]$  are perpendicular.

7) Find a vector that is perpendicular to  $\vec{a} = [3, -1]$ . Verify that the vectors are perpendicular.

8) Which of the following is a right-angled triangle? Identify the right angle in that triangle.

- $\triangle ABC$  for A(3,1), B(-2,3), and C(5,6)
- $\Delta STU$  for S(4,6), T(-3,7), and U(-5,-4)

ANSWER KEY: 1)a) -3900 b) 31892.762)a) 57.29 b) -273 933.173)a) -2 b) -27 c) -30 d) -324)a) no, you cannot dot a vector with a scalar b) yes c) yes d) yes e) no, you cannot multiply vectors f) yes 5)a) -2 b) 9 c) 6 d) -38 e) not possible- you cannot dot a vector with a scalar f) -2 g) -24 h) 9 6) t = 12, -127) Answers may vary: [-1, -3], [1, 3], check using the dot product 8)  $\Delta ABC$  is a right triangle; the right angle is  $\angle BAC$