1) Complete the following table of values for the function $f(x)=\sin (x)$ and $g(x)=\csc (x)$. Use special triangles, the unit circle, or a calculator to find values for the function. Then graph both functions on the same grid. Draw asymptotes where necessary.

| $x$ | $f(x)$ | $g(x)$ |
| :---: | :---: | :---: |
| 0 |  |  |
| $\frac{\pi}{6}$ |  |  |
| $\frac{2 \pi}{6}=\frac{\pi}{3}$ |  |  |
| $\frac{3 \pi}{6}=\frac{\pi}{2}$ |  |  |
| $\frac{4 \pi}{6}=\frac{2 \pi}{3}$ |  |  |
| $\frac{5 \pi}{6}$ |  |  |
| $\frac{6 \pi}{6}=\pi$ |  |  |
| $\frac{7 \pi}{6}$ |  |  |
| $\frac{8 \pi}{6}=\frac{4 \pi}{3}$ |  |  |
| $\frac{9 \pi}{6}=\frac{3 \pi}{2}$ |  |  |
| $\frac{10 \pi}{6}=\frac{5 \pi}{3}$ |  |  |
| $\frac{11 \pi}{6}$ |  |  |
| $\frac{12 \pi}{6}=2 \pi$ |  |  |


2) Complete the following table of values for the function $f(x)=\cos (x)$ and $g(x)=\sec (x)$. Use special triangles, the unit circle, or a calculator to find values for the function. Then graph both functions on the same grid. Draw asymptotes where necessary.

| $x$ | $f(x)$ | $g(x)$ |
| :---: | :---: | :---: |
| 0 |  |  |
| $\frac{\pi}{6}$ |  |  |
| $\frac{2 \pi}{6}=\frac{\pi}{3}$ |  |  |
| $\frac{3 \pi}{6}=\frac{\pi}{2}$ |  |  |
| $\frac{4 \pi}{6}=\frac{2 \pi}{3}$ |  |  |
| $\frac{5 \pi}{6}$ |  |  |
| $\frac{6 \pi}{6}=\pi$ |  |  |
| $\frac{7 \pi}{6}$ |  |  |
| $\frac{8 \pi}{6}=\frac{4 \pi}{3}$ |  |  |
| $\frac{9 \pi}{6}=\frac{3 \pi}{2}$ |  |  |
| $\frac{10 \pi}{6}=\frac{5 \pi}{3}$ |  |  |
| $\frac{11 \pi}{6}$ |  |  |
| $\frac{12 \pi}{6}=2 \pi$ |  |  |


3) Complete the following table of values for the function $f(x)=\tan (x)$. Use the quotient identity to find $y$ values.

| $x$ | $f(x)$ |
| :---: | :---: |
| 0 |  |
| $\frac{\pi}{6}$ |  |
| $\frac{2 \pi}{6}=\frac{\pi}{3}$ |  |
| $\frac{3 \pi}{6}=\frac{\pi}{2}$ |  |
| $\frac{4 \pi}{6}=\frac{2 \pi}{3}$ |  |
| $\frac{5 \pi}{6}$ |  |
| $\frac{6 \pi}{6}=\pi$ |  |
| $\frac{7 \pi}{6}$ |  |
| $\frac{8 \pi}{6}=\frac{4 \pi}{3}$ |  |
| $\frac{9 \pi}{6}=\frac{3 \pi}{2}$ |  |
| $\frac{10 \pi}{6}=\frac{5 \pi}{3}$ |  |
| $\frac{11 \pi}{6}$ |  |
| $\frac{12 \pi}{6}=2 \pi$ |  |


4) A boat is in the water 150 meters from a straight shoreline. There is a rotating beam on the boat.
a) Determine a reciprocal trigonometric relation for the distance, $d$, from the boat to where the light hits the shoreline in terms of the angle of rotation $x$.
b) Determine an exact expression for the distance when $x=\frac{\pi}{6}$
c) Determine an approximate value, to the nearest tenth of a meter, for the distance.
5) A variant on the carousel at a theme park is the swing ride. Swings are suspended from a rotating platform and move outward to form an angle $x$ with the vertical as the ride rotates. The angle is related to the radial distance, $r$, in meters, from the center of rotation; the acceleration, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$, due to gravity; and the speed, $v$, in meters per second, of the swing, according to the formula

$$
\cot x=\frac{r g}{v^{2}}
$$



Determine the angle $x$ for a swing located 3.5 meters from the center of rotations and moving at $5.4 \mathrm{~m} / \mathrm{s}$, to the nearest hundredth of a radian.
6) Explain the difference between $\csc \frac{1}{\sqrt{2}}$ and $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

## Answer Key

See posted solutions for \#1-3
4)a) $d=150 \sec x \quad$ b) $\frac{300}{\sqrt{3}} \mathrm{~m} \quad$ c) 173.2 m
5) 0.70
6) The cosecant function is the reciprocal of the sine function. For $\sin ^{-1}$, the -1 is NOT an exponent but instead a notation meaning the opposite operation of sine. The sine function takes an angle for an input and gives a ratio as an output. $\mathrm{sin}^{-1}$ takes a ratio for an input and gives the angle as an output.

