1) Determine the work done by each force \vec{F}, in Joules, for each object moving along \vec{s}.
a) $\vec{F}=[3,-2], \vec{s}=[1,8]$
b) $\vec{F}=[8,-9], \vec{s}=[-3,7]$
2) Determine the work done by the force \vec{F}, in Joules, for each object moving along \vec{s}.
a)

b)

3) Determine the angle between the vectors in each pair.
a) $\vec{p}=[6,7]$ and $\vec{q}=[3,2]$
b) $\vec{r}=[-1,-7]$ and $\vec{s}=[5,4]$
4) Determine the projection of the first vector on the second.
a) $\vec{a}=[6,-1], \vec{b}=[3,-4]$
b) $\vec{c}=[6,7], \vec{d}=[3,2]$
5) Determine the projection of \vec{u} on \vec{v}
a)

b)

c)

6) For each of the following, find the magnitude of the projection of \vec{x} on \vec{y} and also the vector projection of \vec{x} on \vec{y}.
a) $\vec{x}=[1,1], \vec{y}=[1,-1]$
b) $\vec{x}=[2,5], \vec{y}=[-5,12]$
7) $\triangle D E F$ has vertices $D(-3,5), E(2,3)$, and $F(6,7)$. Calculate $\angle D E F$.
8) How much work is done against gravity by the orderly pushing an 85 kg person up a 5 m ramp inclined at an angle of 15° to the horizontal?
9) A stage lamp is dragged 15 m along level ground by a 120 N force applied at an angle of 35° to the ground. It is then dragged up a 12 m ramp, inclined at 15° to the ground, onto a stage using the same force. Find the total work done.
10) A box on a wagon pulled a distance of 35 m by a 27 N force applied at an angle of 40° to the ground. The box is then lifted a distance of 1.5 m and placed on a table by exerting a force of 37 N . Find the total work done.
```
ANSWER KEY
1)a) -13 b) -87
2)a)}826.59 b) 4.27
3)a)}0=15.7\mp@subsup{1}{}{\circ}\mathrm{ b) }0=136.7\mp@subsup{9}{}{\circ
4)a)}[\frac{66}{25},-\frac{88}{25}]\mathrm{ b) }[\frac{96}{13},\frac{64}{13}
5)a) 9.06\hat{v}
6) magnitude =0, vector projection: }\vec{0}\mathrm{ b) magnitude = 年13}\mathrm{ , vector projection: [-250
7) }113.\mp@subsup{2}{}{\circ
8) }1077.98\textrm{J
9) 2827.63 J
10)}779.4 J
```

