1) Determine the work done by each force \vec{F} , in Joules, for each object moving along \vec{s} .

a)
$$\vec{F} = [3, -2], \vec{s} = [1, 8]$$

b)
$$\vec{F} = [8, -9], \vec{s} = [-3, 7]$$

2) Determine the work done by the force \vec{F} , in Joules, for each object moving along \vec{s} .

a)

b)

3) Determine the angle between the vectors in each pair.

a)
$$\vec{p}$$
 = [6, 7] and \vec{q} = [3, 2]

b)
$$\vec{r} = [-1, -7]$$
 and $\vec{s} = [5, 4]$

4) Determine the projection of the first vector on the second.

a)
$$\vec{a} = [6, -1], \vec{b} = [3, -4]$$

b)
$$\vec{c}$$
 = [6, 7], \vec{d} = [3, 2]

5) Determine the projection of \vec{u} on \vec{v}

a)

b)

c)

6) For each of the following, find the magnitude of the projection of \vec{x} on \vec{y} and also the vector projection of \vec{x} on \vec{y} .

a)
$$\vec{x} = [1,1], \vec{y} = [1,-1]$$

b)
$$\vec{x} = [2,5], \vec{y} = [-5,12]$$

7) \triangle DEF has vertices D(-3, 5), E(2, 3), and F(6, 7). Calculate \angle DEF.

8) How much work is done against gravity by the orderly pushing an 85 kg person up a 5 m ramp inclined at an angle of 15° to the horizontal?

9) A stage lamp is dragged 15 m along level ground by a 120 N force applied at an angle of 35° to the ground. It is then dragged up a 12m ramp, inclined at 15° to the ground, onto a stage using the same force. Find the total work done.

10) A box on a wagon pulled a distance of 35 m by a 27 N force applied at an angle of 40° to the ground. The box is then lifted a distance of 1.5 m and placed on a table by exerting a force of 37 N. Find the total work done.

ANSWER KEY

- **1)a)** -13 **b)** -87
- 2)a) 826.59 b) 4.27
- **3)a)** θ = 15.71° **b)** θ = 136.79°
- **4)a)** $\left[\frac{66}{25}, -\frac{88}{25}\right]$ **b)** $\left[\frac{96}{13}, \frac{64}{13}\right]$
- **5)a)** $9.06\hat{v}$ **b)** $-2.39\hat{v}$ **c)** $\vec{0}$
- **6)** magnitude = 0, vector projection: $\vec{0}$ b) magnitude = $\frac{50}{13}$, vector projection: $\left[\frac{-250}{169}, \frac{600}{169}\right]$
- **7)** 113.2°
- 8) 1077.98 J
- 9) 2827.63 J
- **10)** 779.4 J