1) Draw the position vectors.
a) $[-2,3,-4]$
b) $[2,-3,1]$

2) Express each vector as the sum of $\hat{\imath}, \hat{\jmath}$ and \hat{k}.
a) $[2,-1,7]$
b) $[-4,-6,5]$
3) Express each vector in the form [a, b, c].
a) $3 \hat{\imath}-4 \hat{\jmath}+5 \hat{k}$
b) $2 \hat{\imath}+3 \hat{k}$
c) $-8 \hat{\imath}+9 \hat{\jmath}-4 \hat{k}$
d) $-8 \hat{\jmath}-7 \hat{k}$
4) Draw vector $\overrightarrow{A B}$ joining each pair of points. Then write the vector in the form $[a, b, c]$.
a) $\mathrm{A}(2,-1,7)$ and $\mathrm{B}(0,2,-1)$
b) $\mathrm{A}(0,-4,-2)$ and $\mathrm{B}(-3,-1,0)$

5) Draw each position vector. Then find its magnitude.
a) $[-1,5,-2]$
b) $[-2,0,4]$

6) Find a and b such that $\vec{u}=[a, 3,6]$ and $\vec{v}=[-8,12, b]$ are collinear.
7) Draw the vector $\overrightarrow{A B}$ joining each pair of points. Write the vector in the form $[x, y, z]$. Then determine the exact magnitude of the vector.
a) $A(2,1,3)$ and $B(5,7,1)$
b) $A(3,-4,1)$ and $B(6,-1,5)$

8) Evaluate each given the vectors $\vec{a}=[-2,1,8], \vec{b}=[3,1,-2]$, and $\vec{c}=[2,-3,4]$.
a) $3 \vec{b}$
b) $\vec{b}-\vec{c}$
c) $2 \vec{a}-3 \vec{c}+4 \vec{b}$
d) $(\vec{a}+\vec{b})-(\vec{a}+\vec{c})$
e) $\vec{b} \cdot \vec{c}$
f) $\vec{a} \cdot \vec{b}-\vec{c} \cdot \vec{b}$
9) Let $\vec{a}=3 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}, \vec{b}=7 \hat{\imath}+4 \hat{\jmath}-\hat{k}$ and $\vec{c}=-2 \hat{\imath}+5 \hat{\jmath}+9 \hat{k}$.
a) $(\vec{a}+\vec{b}) \cdot \vec{c}$
b) $2 \vec{a} \cdot(4 \vec{b}-3 \vec{c})$
10) Determine the values of k such that \vec{u} and \vec{v} are orthogonal.
a) $\vec{u}=[2, k,-1]$ and $\vec{v}=[3,-2,7]$
b) $\vec{u}=[-3,1, k]$ and $\vec{v}=[4,-k, k]$
11) Find a vector orthogonal to each vector.
a) $[2,-1,7]$
b) $[8,-3,4]$
12) Consider the vectors $\vec{u}=[3,-5,8]$ and $\vec{v}=[3,1,-2]$.
a) Find $\vec{u} \cdot \vec{v}$.
b) Calculate the angle between \vec{u} and \vec{v}.
13) Determine the projection of \vec{a} on \vec{b}.
a) $\vec{a}=[2,1,-3]$ and $\vec{b}=[1,7,6]$
b) $\vec{a}=[3,4,7]$ and $\vec{b}=[2,-1,1]$
14) The initial point of vector $\overrightarrow{C D}=[2,-9,1]$ is $C(-3,2,2)$ determine the coordinates of D.
15) Find 2 unit vectors that are parallel to $\vec{a}=[9,-7,2]$.
16) A triangle has vertices at the points $D=(3,-2,-3), E(7,0,1)$ and $F(1,2,1)$. What type of triangle is Δ $D E F$? Explain.

ANSWER KEY:

1. a)

5)a) $\sqrt{30}$
b) $2 \sqrt{5}$
b)

6) $a=-2, b=24$
7)a) $[3,6,-2], 7$
b) $[3,3,4], \sqrt{34}$

$\begin{array}{ll}\text { 2. a) } 2 \hat{\imath}-\hat{\jmath}+7 \hat{k} & \text { b) }-4 \hat{\imath}-6 \hat{\jmath}+5 \hat{k}\end{array}$
$\begin{array}{lll}\text { 3. a) }[3,-4,5] & \text { b) }[2,0,3] & \text { c) }[-8,9,-4]\end{array}$ d) $[0,-8,-7]$
4. a) $[-2,3,-8]$
b) $[-3,3,2]$

8) a) $[9,3,-6]$ b) $[1,4,-6]$ c) $[2,15,-4]$ d) $[1,4,-6]$ e) -5 f) -16
9) a) 17 b) -48
10)a) $k=-0.5$ b) $k=4, k=-3$
11)a) $[4,8,0]$ b) $[1,0,-2]$
12)a) -12 b) 108.9°
13)a) $\left[\frac{-9}{86}, \frac{-63}{86}, \frac{-27}{43}\right]$ b) $\left[3, \frac{-3}{2}, \frac{3}{2}\right]$
14) $D(-1,-7,3)$
15) $\left[\frac{9}{\sqrt{134}},-\frac{7}{\sqrt{134}}, \frac{2}{\sqrt{134}}\right]$ and $\left[-\frac{9}{\sqrt{134}}, \frac{7}{\sqrt{134}},-\frac{2}{\sqrt{134}}\right]$
16) This is a non-right isosceles triangle because 2 sides of the triangle are the same length but no 2 vectors that make up the sides of the triangle dot to 0 , this tells us there are no perpendicular vectors and therefore no right angles.

