1) Draw the position vectors.

2) Express each vector as the sum of \hat{i} , \hat{j} and \hat{k} .

a) [2, -1, 7] **b)**[-4, -6, 5]

3) Express each vector in the form [*a*, *b*, *c*].

a) $3\hat{\imath} - 4\hat{\jmath} + 5\hat{k}$ **b)** $2\hat{\imath} + 3\hat{k}$

c) $-8\hat{i} + 9\hat{j} - 4\hat{k}$ **d**) $-8\hat{j} - 7\hat{k}$

4) Draw vector \overrightarrow{AB} joining each pair of points. Then write the vector in the form [a, b, c].

5) Draw each position vector. Then find its magnitude.

6) Find a and b such that $\vec{u} = [a, 3, 6]$ and $\vec{v} = [-8, 12, b]$ are collinear.

7) Draw the vector \overrightarrow{AB} joining each pair of points. Write the vector in the form [x, y, z]. Then determine the exact magnitude of the vector.

8) Evaluate each given the vectors $\vec{a} = [-2, 1, 8]$, $\vec{b} = [3, 1, -2]$, and $\vec{c} = [2, -3, 4]$. **a)** $3\vec{b}$ **b)** $\vec{b} - \vec{c}$ **c)** $2\vec{a} - 3\vec{c} + 4\vec{b}$

d)
$$(\vec{a} + \vec{b}) - (\vec{a} + \vec{c})$$
 e) $\vec{b} \cdot \vec{c}$ f) $\vec{a} \cdot \vec{b} - \vec{c} \cdot \vec{b}$

9) Let
$$\vec{a} = 3\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$$
, $\vec{b} = 7\hat{\imath} + 4\hat{\jmath} - \hat{k}$ and $\vec{c} = -2\hat{\imath} + 5\hat{\jmath} + 9\hat{k}$.
a) $(\vec{a} + \vec{b}) \cdot \vec{c}$
b) $2\vec{a} \cdot (4\vec{b} - 3\vec{c})$

10) Determine the values of k such that \vec{u} and \vec{v} are orthogonal.

a) $\vec{u} = [2, k, -1]$ and $\vec{v} = [3, -2, 7]$ **b)** $\vec{u} = [-3, 1, k]$ and $\vec{v} = [4, -k, k]$ **11)** Find a vector orthogonal to each vector.

a) [2, −1, 7]

12) Consider the vectors $\vec{u} = [3, -5, 8]$ and $\vec{v} = [3, 1, -2]$.

a) Find $\vec{u} \cdot \vec{v}$.

b) Calculate the angle between \vec{u} and \vec{v} .

13) Determine the projection of \vec{a} on \vec{b} . **a)** $\vec{a} = [2, 1, -3]$ and $\vec{b} = [1, 7, 6]$ **b)** $\vec{a} = [3, 4, 7]$ and $\vec{b} = [2, -1, 1]$

14) The initial point of vector $\overrightarrow{CD} = [2, -9, 1]$ is C(-3, 2, 2) determine the coordinates of D.

15) Find 2 unit vectors that are parallel to $\vec{a} = [9, -7, 2]$.

16) A triangle has vertices at the points D = (3, -2, -3), E(7, 0, 1) and F(1, 2, 1). What type of triangle is \triangle *DEF*? Explain.

