

1) Find the equation of any asymptotes for the following functions. Then, find the one-sided limits approaching the vertical asymptotes.
a) $f(x)=\frac{x+3}{x^{2}-4}$
b) $y=\frac{x^{2}}{x^{2}-3 x+2}$
c) $y=2 x+\frac{1}{x}$
d) $g(x)=\frac{2 x-3}{x^{2}-6 x+9}$
2) Find the derivative of each function. Then, determine whether the function has any local extrema.
a) $f(x)=\frac{2}{x+3}$
b) $h(x)=\frac{-3}{(x-2)^{2}}$
3) Consider the function $f(x)=\frac{-2}{(x+1)^{2}}$
a) Find the intervals of increase and decrease for $f(x)$.
b) Find the intervals of concavity for $f(x)$.
4) Consider the function $h(x)=\frac{1}{x^{2}-4}$
a) Write the equations of the asymptotes
b) Make a table showing the increasing and decreasing intervals for the function
c) How can you use the table from part b) to determine the behavior of $f(x)$ near the vertical asymptotes?
d) Sketch a graph of the function.

Answers:

1)a) VA: $x=2$ and $x=-2$; HA: $y=0$; $\lim _{x \rightarrow 2^{+}}=\infty, \lim _{x \rightarrow 2^{-}}=-\infty, \lim _{x \rightarrow-2^{+}}=-\infty, \lim _{x \rightarrow-2^{-}}=\infty$
b) VA: $x=1$ and $x=2$; HA: $y=1 ; \lim _{x \rightarrow 2^{+}}=\infty, \lim _{x \rightarrow 2^{-}}=-\infty, \lim _{x \rightarrow 1^{+}}=-\infty, \lim _{x \rightarrow 1^{-}}=\infty$
c) VA: $x=0$; SA: $y=2 x ; \lim _{x \rightarrow 0^{+}}=\infty, \lim _{x \rightarrow 0^{-}}=-\infty$
d) VA: $x=3 ; \mathrm{HA}: y=0 ; \lim _{x \rightarrow 3^{+}}=\infty, \lim _{x \rightarrow 3^{-}}=\infty$
2)a) $f^{\prime}(x)=\frac{-2}{(x+3)^{2}}$; no local extrema \quad b) $h^{\prime}(x)=\frac{6}{(x-2)^{3}} ;$ no local extrema
3)a) decreasing when $x<-1$, increasing when $x>-1$ b) concave down when $x<-1$ or $x>-1$
4)a) VA: $x=2$ and $x=-2$; HA: $y=0$
b) increasing when $x<-2$ or $-2<x<0$; decreasing when $0<x<2$ or $x>2$
c) Since the curve is increasing to the left of $x=-2, \lim _{x \rightarrow-2^{-}}=\infty$

Since the curve is increasing to the right of $x=-2, \lim _{x \rightarrow-2^{+}}=-\infty$
Since the curve is decreasing to the left of $x=2, \lim _{x \rightarrow 2^{-}}=-\infty$
Since the curve is decreasing to the right of $x=2, \lim _{x \rightarrow 2^{+}}=\infty$
d)

