1) Write each expression with base 2.
a) 4^{6}
$=\left(2^{2}\right)^{6}$
b) 8^{3}
$=\left(2^{3}\right)^{3}$
c) $\left(\frac{1}{8}\right)^{2}$
$=\left(\frac{1}{2^{3}}\right)^{2}$
$=2^{12}$
$=2^{9}$
$=\left(2^{-3}\right)^{2}$
$=2^{-6}$
d) 14

$$
\begin{aligned}
& 2^{x}=14 \\
& x=\log _{2}(14) \\
& 2^{\log _{2}(14)}
\end{aligned}
$$

2) Write each expression as a power of 4 .
a) $(\sqrt{16})^{3}$
b) $\sqrt[3]{16}$
c) $\sqrt{64} \times(\sqrt[4]{128})^{3}$
$=4^{3}$

$$
\begin{aligned}
& =(16)^{1 / 3} \\
& =\left(4^{2}\right)^{1 / 3} \\
& =4^{2 / 3}
\end{aligned}
$$

$$
\begin{aligned}
& =(64)^{1 / 2} \times(128)^{3 / 4} \\
& =\left(4^{3}\right)^{1 / 2} \times\left[\left(4^{1 / 2}\right)^{7}\right]^{3 / 4}
\end{aligned}
$$

$$
=4^{3 / 2} \times 4^{21 / 8}
$$

$$
=4^{12 / 8} \times 4^{21 / 8}
$$

$$
=4^{33 / 8}
$$

3) Solve each equation
a) $2^{4 x}=4^{x+3}$
b) $3^{w+1}=9^{w-1}$
$3^{w+1}=\left(3^{2}\right)^{\omega-1}$
c) $4^{3 x}=8^{x-3}$
d) $125^{2 y-1}=25^{y+4}$
$\left(2^{2}\right)^{3 x}=\left(2^{3}\right)^{x-3}$
$\left(5^{3}\right)^{2 y-1}=\left(5^{2}\right)^{y+4}$
$2^{4 x}=2^{2 x+6}$
$3^{w+1}=3^{2 w-2}$
$2^{6 x}=2^{3 x-9}$
$5^{6 y-3}=5^{2 y+8}$
$4 x=2 x+6$
$w+1=2 w-2$

$$
6 x=3 x-9
$$

$2 x=6$ $3=\omega$

$$
3 x=-9
$$

$$
6 y-3=2 y+8
$$

$$
x=3
$$

$$
x=-3
$$

4) Consider the equation $10^{2 x}=100^{2 x-5}$
a) Solve this equation by expressing both sides as powers of a common base.

$$
\begin{aligned}
10^{2 x} & =\left(10^{2}\right)^{2 x-5} \\
10^{2 x} & =10^{4 x-10} \\
2 x & =4 x-10 \\
10 & =2 x \\
x & =5
\end{aligned}
$$

b) Solve the same equation by taking the common logarithm of both sides.

$$
\begin{aligned}
& \log \left(10^{2 x}\right)=\log \left(100^{2 x-5}\right) \\
& 2 x \log (10)=(2 x-5) \log (100) \\
& 2 x(1)=(2 x-5)(2) \\
& 2 x=4 x-10 \\
& 10=2 x \\
& x=5
\end{aligned}
$$

5) Solve $2^{3 x}>4^{x+1}$

$$
\begin{aligned}
2^{3 x} & >\left(2^{2}\right)^{x+1} \\
2^{3 x} & >2^{2 x+2} \\
3 x & >2 x+2 \\
x & >2
\end{aligned}
$$

6) Solve for t. Round answers to 2 decimal places.
a) $2=1.07^{t}$
$t=\log _{1.07} 2$
$t \simeq 10.24$
b) $100=10(1.04)^{t}$
$10=1.04^{t}$
$t=\log _{1.04}(10)$
$t \simeq 58.71$
c) $15=\left(\frac{1}{2}\right)^{\frac{t}{4}}$
$\frac{t}{4}=\log _{1 / 2}(15)$
$t=4 \log _{\frac{1}{2}}(15)$
$t \simeq-15.63$
7) Solve each equation. Round answers to 3 decimal places.
a) $2^{x}=3^{x-1}$
$\log \left(2^{x}\right)=\log \left(3^{x-1}\right)$
$x \log (2)=(x-1) \log (3)$
$x \log (2)=x \log (3)-\log (3)$
$\log (3)=x \log (3)-x \log (2)$
b) $5^{x-2}=4^{x}$
$\log \left(5^{x-2}\right)=\log \left(4^{x}\right)$
$(x-2) \log (5)=x \log (4)$
$x \log (5)-2 \log (5)=x \log (4)$
$x \log (5)-x \log (4)=2 \log (5)$
$x[\log (5)-\log (4)]=\log (25)$

$$
\begin{aligned}
& x=\frac{\log (25)}{\log \left(\frac{5}{4}\right)} \\
& x=\log _{5 / 4}(25)
\end{aligned}
$$

$x \simeq 14.425$
c) $7^{2 x+1}=4^{x-2}$

$$
2 x \log (7)+\log (7)=x \log (4)-2 \log (4)
$$

$\log (3)=x[\log (3)-\log (2)]$

$$
\begin{aligned}
\log (7)+2 \log (4) & =x \log (4)-2 x \log (7) \\
\log (7)+\log (16) & =x[\log (4)-2 \log (7)]
\end{aligned}
$$

$\frac{\log (3)}{\log \left(\frac{3}{2}\right)}=x$

$$
\log (112)=x \log \left(\frac{4}{199}\right)
$$

$x=\log _{3 / 2}(3)$

$$
\begin{aligned}
\log \left(7^{2 x+1}\right) & =\log \left(4^{x-2}\right) \\
(2 x+1) \log (7) & =(x-2) \log (4)
\end{aligned}
$$

$$
x=\frac{\log (112)}{\log \left(\frac{4}{49}\right)}
$$

$$
x=\log _{4 / 49}(112)
$$

$$
x \simeq-1.883
$$

8) Solve $2^{2 x}+2^{x}-6=0$ using the quadratic formula (or by factoring). Clearly identify any extraneous roots.

$$
\begin{gathered}
\left(2^{x}\right)^{2}+\left(2^{x}\right)-6=0 \\
\text { Let } k=2^{x} \\
k^{2}+k-6=0 \\
(k+3)(k-2)=0 \\
k=-3 \quad k=2 \\
2^{x}=-3 \quad 2^{x}=2^{\prime} \\
x=\log _{2}(-3) \quad x=1
\end{gathered}
$$

No Real solution
9) Solve $8^{2 x}-2\left(8^{x}\right)-5=0$ using the quadratic formula. Clearly identify any extraneous roots.

$$
\begin{aligned}
& \left(8^{x}\right)^{2}-2\left(8^{x}\right)-5=0 \\
& \text { let } k=8^{x} \\
& k^{2}-2 k-5=0 \\
& k=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(-5)}}{2(1)} \\
& k=\frac{2 \pm \sqrt{24}}{2} \\
& k=\frac{2 \pm 2 \sqrt{6}}{2} \\
& k=\frac{2(1 \pm \sqrt{6})}{2} \\
& k=1 \pm \sqrt{6}
\end{aligned}
$$

10) Use the decay equation for polonium -218, $A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{3.1}}, A$ is the amount remaining after t minutes and A_{0} is the initial amount.
a) How much will remain after 90 seconds from an initial sample of 50 mg ?

$$
\begin{aligned}
A(1.5) & =50\left(\frac{1}{2}\right)^{1.5 / 3.1} \\
& \simeq 35.75 \mathrm{mg}
\end{aligned}
$$

b) How long will it take for this sample to decay to 10% of its initial amount of 50 mg ?

$$
\begin{aligned}
& 5=50\left(\frac{1}{2}\right)^{t / 301} \\
& 0.1=(0.5)^{t / 3.1} \\
& \frac{t}{3.1}=\log _{0.5}(0.1) \\
& t=3.1 \log _{0.5}(0.1) \\
& t \simeq 10.3 \text { minutes }
\end{aligned}
$$

11) A $20-\mathrm{mg}$ sample of thorium- 233 decays to 17 mg after 5 minutes.
a) What is the half-life of thorium-233?

$$
\begin{aligned}
& 17=20\left(\frac{1}{2}\right)^{5 / 14} \\
& 0.85=0.5^{5 / 14} \\
& \frac{5}{H}=\log _{0.5}(0.85) \\
& H=\frac{5}{\log _{0.5}(0.85)} \\
& H \simeq 21.33 \text { minutes }
\end{aligned}
$$

b) How long will it take this sample to decay to 1 mg ?

$$
\begin{aligned}
& 1=20\left(\frac{1}{2}\right)^{t / 2.33} \\
& 0.05=0.5^{t / 21.33} \\
& \frac{t}{21.33}=\log _{0.5}(0.05) \\
& t=21.33 \log _{0.5}(0.05) \\
& t \simeq 92 e 2 \text { minutes }
\end{aligned}
$$

ANSWER KEY

1)a) 2^{12} b) 2^{9} c) 2^{-6} $\begin{array}{ll}\text { d) } 2^{\frac{\log 14}{\log 2}} & \text { 2)a) } 4^{3}\end{array}$ b) $4^{\frac{2}{3}}$ c) $4^{\frac{33}{8}}$ 5) $x>2$ 6)a) 10.24 b) 58.71 c) -15.63
Jj
3)a) 3 b) 3 c) -3 d) $\frac{11}{4}$
7)a) 2.710 b) 14.425 c) -1.883

$$
0
$$

8) $x=1$ is the only solution; $2^{x}=-3$ or $x=\frac{\log (-3)}{\log 2}$ is an extraneous root
9) $x=\frac{\log (1+\sqrt{6})}{\log 8} \cong 0.6$ is the only solution; $8^{x}=1-\sqrt{6}$ or $x=\frac{\log (1-\sqrt{6})}{\log 8}$ is an extraneous root 10)a) 35.75 mg b) 10.3 min
11)a) 21.3 min b) 92.06 min
