

c) \vec{u} = [2, -1, 7], \vec{v} = [2, 1, 3]

d) $\vec{u} = [-3, 4, 7], \vec{v} = [4, 3, -5]$

e) $\vec{u} = 3\hat{\imath} + 4\hat{\jmath} - \hat{k}$ $\vec{v} = 5\hat{\imath} + \hat{\jmath} - 2\hat{k}$

f) $\vec{u} = 2\hat{\imath} - 3\hat{\jmath} + 7\hat{k}$ $\vec{v} = -\hat{\imath} + \hat{\jmath}$

2) Find a vector perpendicular to each of the following pairs of vectors. Use the dot product to check your answer.

a) [5, 0, 1] and [-2, 5, 8]

b) [1, 4, -2] and [-4, 9, 0]

3) Find a unit vector perpendicular to $\vec{a} = [6, -2, -3]$ and $\vec{b} = [5, 1, -4]$.

4) Given $\vec{a} = [1, -2, -1]$, $\vec{b} = [2, 2, -1]$ and $\vec{c} = [2, -3, -4]$, evaluate each of the following: **a)** $\vec{a} \times (\vec{b} \times \vec{c})$ **b)** $(\vec{a} \times \vec{b}) \times \vec{c}$ **e)** $(\vec{a} \times \vec{c}) \cdot \vec{b}$

f) $(\vec{a} \times \vec{b}) \cdot \vec{c}$

g) $\left| \vec{a} \times \vec{b} \right|$

h) $\left| \vec{a} \times (\vec{b} - \vec{c}) \right|$

5) Use the cross product to determine the angles between the vectors $\vec{a} = [2, 1, -3]$ and $\vec{b} = [5, -4, 3]$. Consider ambiguous case. Use dot product to confirm or use graphing software to inspect.

6) Determine the area of $\triangle PQR$ with vertices of P(3, -2, 7), Q(2, 2, -3), and R(1, 1, 2).

7) Determine the area of the parallelogram ABCD defined by the vertices A(2, -1, -1), B(-4, -2, 3), C(2, 3, 2), and D(8, 4, -2).

ANSWER KEY: 1)a) $-3377.5\hat{n}$ or 3377.5 in to the page b) $-84.9\hat{n}$ or 84.9 in to the page c) [-10, 8, 4] d) [-41, 13, -25] e) [-7, 1, -17] f) [-7, -7, -1]2)a) [-5, -42, 25] b) [18, 8, 25]3) $\frac{1}{\sqrt{458}}$ [11, 9, 16]4)a) [26, 21, -16] b) [22, 28, -10] c) [1, 3, -5] d) [-33, 18, -30] e) 13 f) -13 g) $\sqrt{53}$ h) $\sqrt{35}$ 5) 96.5° 6) $2.5\sqrt{14}$ units² 7) $\sqrt{1261}$ units²