1) Determine $\vec{u} \times \vec{v}$.
a)

b)

c) $\vec{u}=[2,-1,7], \vec{v}=[2,1,3]$
d) $\vec{u}=[-3,4,7], \vec{v}=[4,3,-5]$
e) $\vec{u}=3 \hat{\imath}+4 \hat{\jmath}-\hat{k} \quad \vec{v}=5 \hat{\imath}+\hat{\jmath}-2 \hat{k}$
f) $\vec{u}=2 \hat{\imath}-3 \hat{\jmath}+7 \hat{k} \quad \vec{v}=-\hat{\imath}+\hat{\jmath}$
2) Find a vector perpendicular to each of the following pairs of vectors. Use the dot product to check your answer.
a) $[5,0,1]$ and $[-2,5,8]$
b) $[1,4,-2]$ and $[-4,9,0]$
3) Find a unit vector perpendicular to $\vec{a}=[6,-2,-3]$ and $\vec{b}=[5,1,-4]$.
4) Given $\vec{a}=[1,-2,-1], \vec{b}=[2,2,-1]$ and $\vec{c}=[2,-3,-4]$, evaluate each of the following:
a) $\vec{a} \times(\vec{b} \times \vec{c})$
b) $(\vec{a} \times \vec{b}) \times \vec{c}$
f) $(\vec{a} \times \vec{b}) \cdot \vec{c}$

$$
\text { g) }|\vec{a} \times \vec{b}|
$$

h) $|\vec{a} \times(\vec{b}-\vec{c})|$
5) Use the cross product to determine the angles between the vectors $\vec{a}=[2,1,-3]$ and $\vec{b}=[5,-4,3]$. Consider ambiguous case. Use dot product to confirm or use graphing software to inspect.
6) Determine the area of $\triangle P Q R$ with vertices of $P(3,-2,7), Q(2,2,-3)$, and $R(1,1,2)$.
7) Determine the area of the parallelogram $A B C D$ defined by the vertices $A(2,-1,-1), B(-4,-2,3), C(2,3,2)$, and $D(8,4,-2)$.

```
ANSWER KEY:
```



```
2)a) [-5, -42, 25] b) [18, 8, 25]
3) }\frac{1}{\sqrt{}{458}}[11,9,16
4)a) [26, 21, -16] b) [22, 28, -10] c) [1, 3, -5] d) [-33, 18, -30] e) 13 f) -13 g) \sqrt{}{53}}\mathrm{ h) }\sqrt{}{35
5) 96.5
6) 2.5 \sqrt{}{14}\mp@subsup{\mathrm{ units }}{}{2}
7) }\sqrt{}{1261}\mp@subsup{\mathrm{ units}}{}{2
```

