1) Determine the magnitudes of the horizontal and vertical components of each force.
a) magnitude of $570 \mathrm{~N}, \theta=37^{\circ}$ counterclockwise from the horizontal
b) magnitude of $29 \mathrm{~N}, \theta=52^{\circ}$ clockwise from the horizontal
2) A woman is pulling on a rope attached to a toboggan with a 370 N force at an angle of 35° to the horizontal. Find the magnitude of the force pulling the sled forward and the magnitude of the force pulling the sled upward.
3) A 10 kg block lies on a smooth ramp that is inclined at 30°. What force, parallel to the ramp, would prevent the block from moving. (Assume that 1 kg exerts a force of 9.8 N)
4) A 20 kg box rests on a ramp that is inclined 18°. Resolve the weight into rectangular vector components that keep the box at rest.
5) Resolve a 200 N force into two rectangular vector components such that the ratio of their magnitudes is 3:1. Calculate the angle between the greater component and the 200 N force.
6) A sign is supported as shown in the diagram. The tension in the slanted rod supporting the sign is 110 N at an angle of 25° to the horizontal.
a) Draw a vector diagram showing the vector components of the tension vector.

b) What are the vertical and horizontal vector components of the tension?

ANSWER KEY:

1)a) $\left|\overrightarrow{F_{x}}\right|=455.2 \mathrm{~N},\left|\overrightarrow{F_{y}}\right|=343.0 \mathrm{~N} \quad$ b) $\left|\overrightarrow{F_{x}}\right|=17.9 \mathrm{~N},\left|\overrightarrow{F_{y}}\right|=22.9 \mathrm{~N}$ 2) forward: 303.1 N ; upward: 212.2 N 3) 49 N
4) $|\vec{n}|=186.41 \mathrm{~N}|\vec{f}|=60.57 \mathrm{~N}$
5) 18.4°
6)a)
b) $99.7 \mathrm{~N} \quad$ c) 46.5 N

