1) Solve each of the following quadratics using the most appropriate method. Round answers to 2 decimal places when necessary.

$$
\begin{aligned}
& \text { a) } 0=x^{2}+7 x+5 \\
& x=\frac{-7 \pm \sqrt{(7)^{2}-4(1)(5)}}{2(1)} \\
& x=\frac{-7 \pm \sqrt{29}}{2}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { b) } x^{2}+5 x=-4 \\
x^{2}+5 x+4=0 \quad & \frac{4}{4} \times \frac{1}{1}=4 \\
(x+4)(x+1)=0 \\
x+4=0 \quad x+1=0 \\
x_{1}=-4 \quad x_{2}=-1
\end{array}
$$

$$
x_{1}=\frac{-7+\sqrt{29}}{2} \quad x_{2}=\frac{-7-\sqrt{29}}{2}
$$

$$
x_{1} \simeq-0.81 \quad x_{2} \simeq-6.19
$$

$$
\begin{aligned}
& \text { c) } \begin{array}{l}
6 x^{2}+x=1 \\
6 x^{2}+x-1=0 \quad \frac{3}{3} \times \frac{-2}{}=-6 \\
6 x^{2}+3 x-2 x-1=0 \\
3 x(2 x+1)-1(2 x+1)=0 \\
(2 x+1)(3 x-1)=0
\end{array} \$=1
\end{aligned}
$$

$$
\begin{array}{ll}
2 x+1=0 & 3 x-1=0 \\
2 x=-1 & 3 x=1 \\
x_{1}=\frac{-1}{2} & x_{2}=\frac{1}{3}
\end{array}
$$

$$
\text { e) } 0=-2 x^{2}+4 x+7
$$

$$
x=\frac{-4 \pm \sqrt{(4)^{2}-4(-2)(7)}}{2(-2)}
$$

$$
x=\frac{-4 \pm \sqrt{72}}{-4}
$$

$$
x_{1}=\frac{-4+\sqrt{72}}{-4} \quad x_{2}=\frac{-4-\sqrt{72}}{-4}
$$

$$
x_{1} \simeq-1.12 \quad x_{2} \simeq 3.12
$$

d) $4 a^{2}+12 a=-9$

$$
4 a^{2}+12 a+9=0 \quad \frac{6}{x} \times \frac{6}{c}=36
$$

$$
4 a^{2}+6 a+6 a+9=0 \quad \underline{6}+\underline{6}=12
$$

$$
2 a(2 a+3)+3(2 a+3)=0
$$

$$
(2 a+3)(2 a+3)=0
$$

$$
(2 a+3)^{2}=0
$$

$$
2 a+3=0
$$

$$
\begin{aligned}
& 2 a=-3 \\
& a=-\frac{3}{2}
\end{aligned}
$$

f) $x^{2}-2 x+3=0$

$$
x=\frac{2 \pm \sqrt{(-2)^{2}-4(1)(3)}}{2(1)}
$$

$$
x=\frac{2 \pm \sqrt{-8}}{2}
$$

No real solutions

$$
\begin{aligned}
& \text { g) } x^{2}+4 x-21=0 \quad \frac{7}{7} \times \frac{-3}{}=-21 \\
& (x+7)(x-3)=0 \quad \quad-3=4 \\
& x+7=0 \quad x-3=0 \\
& x_{1}=-7 \quad x_{2}=3
\end{aligned}
$$

h) $-x^{2}+5 x+6=0$

$$
\begin{aligned}
& -\left(x^{2}-5 x-6\right)=0 \quad \frac{-6}{-6}+1=-6 \\
& -(x-6)(x+1)=0 \\
& x-6=0 \quad x+1=0 \\
& x_{1}=6 \quad x_{2}=-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { i) } 0=3 x^{2}+6 x+4 \\
& x=\frac{-6 \pm \sqrt{(6)^{2}-4(3)(4)}}{2(3)} \\
& x=\frac{-6 \pm \sqrt{-12}}{6}
\end{aligned}
$$

No real solutions
k) $8 x^{2}=4 x$

$$
\begin{array}{r}
8 x^{2}-4 x=0 \\
4 x(2 x-1)=0
\end{array}
$$

$$
\begin{array}{lc}
4 x=0 & 2 x-1=0 \\
x_{1}=0 & 2 x=1 \\
& x_{2}=\frac{1}{2}
\end{array}
$$

$$
\begin{gathered}
\text { j) } x^{2}+11=155 \\
x^{2}-144=0 \\
(x)^{2}-(12)^{2}=0 \\
(x-12)(x+12)=0 \\
x-12=0 \quad x+12=0 \\
x_{1}=12 \quad x_{2}=-12
\end{gathered}
$$

Alternate Method

$$
\begin{gathered}
x^{2}=144 \\
x= \pm \sqrt{144} \\
x= \pm 12 \\
x_{1}=12 \quad x_{2}=-12
\end{gathered}
$$

$$
\begin{gathered}
\text { I) } 3 x^{2}-x-7=0 \\
x=\frac{1 \pm \sqrt{(-1)^{2}-4(3)(-7)}}{2(3)} \\
x=\frac{1 \pm \sqrt{85}}{6} \\
x_{1}=\frac{1+\sqrt{85}}{6} \quad x_{2}=\frac{1-\sqrt{85}}{6} \\
x_{1} \simeq 1.70 \quad x_{2} \simeq-1.37
\end{gathered}
$$

2) Use the discriminant to determine the number of solutions each quadratic equation would have.
a) $x^{2}-4 x+4=0$
$b^{2}-4 a c=(-4)^{2}-4(1)(4)$
001 solution
b) $-2 x^{2}+3 x-8=0$
$b^{2}-4 a c=(3)^{2}-4(-2)(-8)$

$$
=-55
$$

c) $2 x^{2}+3 x-8=0$
$1_{0}^{2}-4 a c=(3)^{2}-4(2)(-8)$
$=73$
od 2 solutions
3) Describe the roots of the equation $a x^{2}+b x+c=0$ in each of the following situations. Explain and justify your reasoning.
a) $b^{2}-4 a c<0$

> No real solutions. The square root of a negative number is
> Not a real number. You get no real solutions if the quadratic
> opens up and has its vertex above the x-axis of if the quadratic opens down and has its vertex below the x-axis.
b) $b^{2}-4 a c=0$

1 real solution. In the $Q F$, adding and subtracting O gives the same result. You get 1 solution when the vertex is ON the x-axis.
c) $b^{2}-4 a c>0$ and is a perfect square

$$
\begin{aligned}
& \text { You get } 2 \text { solutions that are rational numbers. If this } \\
& \text { happens, solving by factoring would also work. }
\end{aligned}
$$

d) $b^{2}-4 a c>0$ and is NOT a perfect square

You get 2 solutions that are irrational numbers. If this happens, solving by factoring would NOT work. QF must be used.
4) Determine the vertex of each of the following quadratics.
a) $y=2 x^{2}-20 x+7$
x-vertex $=\frac{20}{2(2)}=5$
y-vertex $=2(5)^{2}-20(5)+7=-43$
The vertex is $(5,-43)$
b) $y=3 x^{2}+12 x-4$
x-vertex $=\frac{-12}{2(3)}=-2$
y-vertex $=3(-2)^{2}+12(-2)-4=-16$
The vertex is $(-2,-16)$
5) Find the x-intercepts and the vertex of each parabola. Then, sketch its graph.
a) $y=x^{2}+8 x+12$

$\overbrace{0}^{x-i n t}$	vertex
$0=x^{2}+8 x+12$	y-vertex $=\frac{-6+(-2)}{2}=-4$
$0=(x+6)(x+2)$	y-vertex $=-4$
$x+6=0 \quad x+2=0$	vertex is $(-4,-4)$

b) $y=-2 x^{2}-6 x+3$
x-int
$0=-2 x^{2}-6 x+3$
$x=\frac{6 \pm \sqrt{(-6)^{2}-4(-2)(3)}}{2(-2)}$
$x=\frac{6 \pm \sqrt{60}}{-4}$
$x_{1}=\frac{6+\sqrt{60}}{-4} \quad x_{2}=\frac{6-\sqrt{60}}{-4}$
$x_{1} \simeq-3.44 \quad x_{2} \simeq 0.44$

6) Angie sold 1200 tickets for the holiday concert at $\$ 20$ per ticket. Her committee is planning to increase the prices this year. Their research shows that for each $\$ 2$ increase in the price of a ticket, 60 fewer tickets will be sold.
a) Determine the revenue relation that describes the ticket sales.

$$
\begin{aligned}
& R=(\text { price })(\# \text { solid }) \\
& R=(20+2 n)(1200-60 n)
\end{aligned}
$$

b) What should the selling price per ticket be to maximize revenue?

$$
\begin{array}{cc}
\text { Price \#sold } & \\
0=(20+2 n)(1200-60 n) & x \text {-vertex }=\frac{-10+20}{2}=5 \\
20+2 n=0 \quad 1200-60 n=0 & \\
2 n=-20 \quad 1200=60 n \\
n=-10 \quad n=20 &
\end{array}
$$

$$
\begin{aligned}
& 5 \text { price increases will generate a max revenue } \\
& \text { The new selling price }=20+2(5)=\$ 30
\end{aligned}
$$

c) How many tickets will be sold at the maximum revenue?

$$
\# \text { sold }=1200-60(5)=900 \text { tickets }
$$

d) What is the maximum revenue?

$$
\begin{aligned}
R & =[20+2(5)][1200-60(5)] \\
& =(30)(900) \\
& =\$ 27000
\end{aligned}
$$

7) The path of a golf ball can be modelled by the equation $h=-2 d^{2}+12 d-13$, where d represents the horizontal distance, in metres, that the ball travels and h represents the height of the ball, in metres, above the ground. What is the maximum height of the golf ball and at what horizontal distance does it occur?

$$
\begin{aligned}
& x \text {-vertex }=\frac{-12}{2(-2)}=3 \\
& y \text {-vertex }=-2(3)^{2}+12(3)-13=5
\end{aligned}
$$

A max height of 5 n occurs at a horizantal distance of 3 n
8) The area of the front cover of a daily journal is $273 \mathrm{~cm}^{2}$, and the length is 8 cm greater than the width. What are the dimensions of the cover?

9) A rectangular lawn measuring 8 meters by 4 meters is surrounded by a flower bed of uniform width. The combined area of the lawn and the flower bed is $165 \mathrm{~m}^{2}$. What is the width of the flower bed?

$8+2 x$

$$
\begin{aligned}
& 165=(8+2 x)(4+2 x) \\
& 165=32+16 x+8 x+4 x^{2} \\
& 0=4 x^{2}+24 x-133 \\
& x=\frac{-24 \pm \sqrt{(24)^{2}-4(4)(-133)}}{2(4)}
\end{aligned}
$$

$$
x=\frac{-24 \pm \sqrt{2704}}{8}
$$

$$
\begin{array}{ll}
x=\frac{-24+52}{8} & x=\frac{-24-52}{8} \\
x=3.5 m & x=-2.5
\end{array}
$$

Answers

1)a) $x=-6.19,-0.81$ b) $x=-4,-1$ c) $x=-\frac{1}{2}, \frac{1}{3}$ d) $x=-\frac{3}{2}$ e) $x=-1.12,3.12$ f) no real solutions g) $x=-7,3$ h) $x=-1,6$ i) no real solutions j) $x=-12,12$ k) $x=0, \frac{1}{2}$ I) $x=-1.37,1.70$
2)a) 1 solution b) no real solutions c) 2 solutions
3)a) no real solutions b) 1 real solution c) 2 real rational solutions d) 2 real irrational solutions
4)a) $(5,-43)$ b) $(-2,-16)$
5)a)

b)

6)a) $R=(20+2 x)(1200-60 x) \quad$ b) $\$ 30 \quad$ c) $900 \quad$ d) $\$ 27000$
7) The maximum height of 5 m occurs at a horizontal distance of 3 m .
8) 13 cm by 21 cm
9) 3.5 m

