<mark>Unit 5 Pretest Review</mark> MPM2D *Jensen*

1) Solve each of the following quadratics using the most appropriate method. Round answers to 2 decimal places when necessary.

a)
$$0 = x^{2} + 7x + 5$$

 $\chi = -7 \pm \sqrt{(1)^{2} - 4(1)(5)}$
 $x = -7 \pm \sqrt{3} \sqrt{2} \sqrt{(1)(5)}$
 $\chi = -7 \pm \sqrt{3} \sqrt{3}$
 $\chi_{12} = -\sqrt{3} \sqrt{3}$
 $\chi_{12} = -\sqrt{3}$
 χ_{12}

 $\chi = \frac{2^{\pm} \int -8}{2}$

No real solutions

$$\chi = -\frac{4 \pm \sqrt{(4)^{2} - 4(-2)(7)}}{2(-2)}$$

$$\chi = -\frac{4 \pm \sqrt{72}}{-4}$$

$$\chi_{1} = -\frac{4 \pm \sqrt{72}}{-4}$$

$$\chi_{2} = -\frac{4 - \sqrt{72}}{-4}$$

$$\chi_{2} = -\frac{4 - \sqrt{72}}{-4}$$

$$\chi_{3} = -\frac{1}{\sqrt{2}}$$

g)
$$x^{2} + 4x - 21 = 0$$

 $(x+7)(x-3) = 0$
 $x+7 = 0$
 $\chi_{1} = -7$
 $\chi_{2} = 3$
 $7 \times -3 = 0$
 $7 \times -3 = -2i$
 $(x+7)(x-3) = 0$
 $7 \times -3 = -2i$
 $(x+7)(x-3) = 0$
 $(x+7)(x-3) = 0$
 $(x+7)(x-3) = 0$
 $(x+7)(x-3) = 0$
 $(x-6)(x+1) = 0$
 $\chi_{1} = -6$
 $(x-6)(x+1) = 0$
 $\chi_{1} = -6$
 $\chi_{1} = -5$
 $\chi_{2} = -1$

i)
$$0 = 3x^{2} + 6x + 4$$

 $\chi = -6 \pm \sqrt{(6)^{2} - 4(3)(4)}$
 $\chi = -6 \pm \sqrt{-12}$
No real solutions

j)
$$x^{2} + 11 = 155$$

 $\chi^{2} - 144 = 0$
 $(\chi)^{2} - (12)^{2} = 0$
 $(\chi - 12)(\chi + 12) = 0$
 $\chi = \pm \sqrt{144}$
 $\chi = \pm \sqrt{144}$
 $\chi = \pm \sqrt{144}$
 $\chi = \pm 12$
 $\chi_{1} = 12$
 $\chi_{2} = -12$

k)
$$8x^2 = 4x$$

 $8x^2 - 4x = 0$
 $4x(2x-1) = 0$
 $4x = 0$
 $2x - 1 = 0$
 $2x = 1$
 $2x = \frac{1}{2}$

1)
$$3x^{2} - x - 7 = 0$$

 $\chi = \frac{1 \pm \sqrt{(-1)^{2} - 4(3)(-7)}}{2(3)}$
 $\chi = \frac{1 \pm \sqrt{85}}{6}$
 $\chi_{1} = \frac{1 \pm \sqrt{85}}{6}$
 $\chi_{2} = \frac{1 - \sqrt{85}}{6}$
 $\chi_{3} \simeq -1.37$

2) Use the discriminant to determine the number of solutions each quadratic equation would have.

3) Describe the roots of the equation $ax^2 + bx + c = 0$ in each of the following situations. Explain and justify your reasoning.

a)
$$b^2 - 4ac < 0$$

No real solutions. The square root of a negative number is
NOT a real number. You get no real solutions if the quadratic
opens up and has its vertex above the x-axis OR if the quadratic
opens down and has its vertex below the x-axis.
b) $b^2 - 4ac = 0$
I real solution. In the QF, adding and subtracting O gives
the same result. You get I solution when the vertex is
ON the X-axis.

c) $b^2 - 4ac > 0$ and is a perfect square

You get 2 solutions that are rational numbers. IF this happens, solving by factoring would also work.

d) $b^2 - 4ac > 0$ and is NOT a perfect square

You get 2 solutions that are irrational numbers. If this happens, solving by factoring would NOT work. QF must be used.

4) Determine the vertex of each of the following quadratics.

a)
$$y = 2x^2 - 20x + 7$$

 χ -vertex = $\frac{20}{2(2)} = 5$
 χ -vertex = $\frac{20}{2(2)} = -5$
 χ -vertex = $\frac{-12}{2(3)} = -2$
 χ -vertex = $3(-2)^2 + 12(-2) - 4 = -16$
The vertex is $(5, -43)$
The vertex is $(-2, -16)$

5) Find the *x*-intercepts and the vertex of each parabola. Then, sketch its graph.

a)
$$y = x^2 + 8x + 12$$

b)
$$y = -2x^2 - 6x + 3$$

 $x - int$
 $0 = -2x^2 - 6x + 3$
 $x = 6 \pm \sqrt{(-6)^2 - 4(-2)(3)}$
 $x = 6 \pm \sqrt{(-2)}$
 $x = 6 \pm \sqrt{60}$
 $x = -4$
 $x_1 = -4$
 $x_1 = -3 + 4$
 $x_2 = -3 + 4$
 $x_1 = -3 + 4$
 $x_2 = -2x^2 - 6x + 3$
 $x = -2x^2 - 7x^2 - 7$

6) Angie sold 1200 tickets for the holiday concert at \$20 per ticket. Her committee is planning to increase the prices this year. Their research shows that for each \$2 increase in the price of a ticket, 60 fewer tickets will be sold.

a) Determine the revenue relation that describes the ticket sales.

$$R = (price)(\pm sold)$$

 $R = (20+2n)(1200-60n)$

b) What should the selling price per ticket be to maximize revenue?

Price # sold

$$0 = (20+2n)(1200-60n) \qquad x - vertex = -10+20 = 5$$

$$20+2n = -20 \qquad 1200 - 60n = 0$$

$$2n = -20 \qquad 1200 = 60n$$

$$n = -10 \qquad n = 20$$

$$5 \text{ erice increases will generate a max revenue.}$$

c) How many tickets will be sold at the maximum revenue?

d) What is the maximum revenue?

$$R = [20+2(5)][1200-60(5)]$$

= (30)(900)
= \$27000

7) The path of a golf ball can be modelled by the equation $h = -2d^2 + 12d - 13$, where d represents the horizontal distance, in metres, that the ball travels and h represents the height of the ball, in metres, above the ground. What is the maximum height of the golf ball and at what horizontal distance does it occur?

$$\chi$$
-vertex = $\frac{-12}{2(-2)} = 3$
y-vertex = $-2(3)^2$ +12(3)-13 = 5
A max height of 5 n occurs at a horizontal distance of 3 n.

8) The area of the front cover of a daily journal is 273 cm², and the length is 8 cm greater than the width. What are the dimensions of the cover?

9) A rectangular lawn measuring 8 meters by 4 meters is surrounded by a flower bed of uniform width. The combined area of the lawn and the flower bed is 165 m². What is the width of the flower bed?

$$\begin{array}{l}
 165 = (8 + 2x)(4 + 2x) \\
 165 = 32 + 16x + 8x + 4x^{2} \\
 0 = 4x^{2} + 24x - 133 \\
 x = -24 \pm \sqrt{(24)^{2} - 4(4)(-133)} \\
 x = -24 \pm \sqrt{(24)^{2} - 4(4)} \\
 x$$

Answers

1)a)
$$x = -6.19, -0.81$$
 b) $x = -4, -1$ **c)** $x = -\frac{1}{2}, \frac{1}{3}$ **d)** $x = -\frac{3}{2}$ **e)** $x = -1.12, 3.12$ **f)** no real solutions
g) $x = -7, 3$ **h)** $x = -1, 6$ **i)** no real solutions **j)** $x = -12, 12$ **k)** $x = 0, \frac{1}{2}$ **l)** $x = -1.37, 1.70$

2)a) 1 solution b) no real solutions c) 2 solutions

3)a) no real solutions b) 1 real solution c) 2 real rational solutions d) 2 real irrational solutions

9) 3.5 m