L2 -Solving Quadratics by Completing the Square
' MPM2D
; Jensen

Part 1: Investigation

Example 1: For the quadratic $y=x^{2}+6 x+8$
a) Determine the x-intercepts by factoring
b) Determine the vertex using the x-intercepts
c) Convert to vertex form by completing the square
d) Solve for the x-intercepts by rearranging the vertex form equation to isolate for x.

A quadratic equation in standard form, $0=a x^{2}+b x+c$, can be solved for x by first converting into vertex form, $0=a(x-h)^{2}+k$, by completing the square, then rearranging to isolate for x.

Part 2: Rational Solutions

Example 2: Solve each of the following equations by completing the square.
a) $0=x^{2}-12 x+20$
b) $10=2 x^{2}-x$

Notice for each of the equations in this question there were \qquad solutions. That means that each of the equations could have been solved by \qquad .

Part 3: Irrational Solutions

Example 3: Solve each of the following quadratic equations by completing the square.
a) $-3 x^{2}+6 x+7=0$
b) $x^{2}-6 x-8=0$

Notice for each of the equations in this question there were only \qquad solutions. That means that each of the equations could NOT have been solved by \qquad . This is why solving by completing the square is a useful strategy.

Part 4: Non-Real Solutions

Example 4: Solve the following quadratic equation

$$
x^{2}-6 x+10=0
$$

Notice that not all quadratics have \qquad .

Part 5: Application

Example 5: For the quadratic $y=2 x^{2}-5 x+3$, determine the vertex, x-intercepts, and then sketch a graph of the function.

