L2 –Solving Quadratics by Completing the Square	Unit 5
MPM2D	
Jensen	
L	

Part 1: Investigation

Example 1: For the quadratic $y = x^2 + 6x + 8$

a) Determine the x-intercepts by factoring

b) Determine the vertex using the *x*-intercepts

c) Convert to vertex form by completing the square

d) Solve for the *x*-intercepts by rearranging the vertex form equation to isolate for *x*.

A quadratic equation in standard form, $0 = ax^2 + bx + c$, can be solved for x by first converting into vertex form, $0 = a(x - h)^2 + k$, by completing the square, then rearranging to isolate for x.

Part 2: Rational Solutions

Example 2: Solve each of the following equations by completing the square.

a) $0 = x^2 - 12x + 20$ **b)** $10 = 2x^2 - x$

Notice for each of the equations in this question there were ______ solutions. That means that each of the equations could have been solved by ______.

Part 3: Irrational Solutions

Example 3: Solve each of the following quadratic equations by completing the square.

a) $-3x^2 + 6x + 7 = 0$ **b**) $x^2 - 6x - 8 = 0$

Notice for each of the equations in this question there were only ________ solutions. That means that each of the equations could **NOT** have been solved by ______. This is why solving by completing the square is a useful strategy.

Part 4: Non-Real Solutions

Example 4: Solve the following quadratic equation

 $x^2 - 6x + 10 = 0$

Notice that not all quadratics have ______.

Part 5: Application

Example 5: For the quadratic $y = 2x^2 - 5x + 3$, determine the vertex, *x*-intercepts, and then sketch a graph of the function.

