Part 1: Investigation

Example 1: For the quadratic $y=x^{2}+6 x+8$

$$
\begin{aligned}
& \frac{2}{2} \times \frac{4}{4}=8 \\
& \frac{1}{2}=6
\end{aligned}
$$

a) Determine the x-intercepts by factoring

$$
\begin{aligned}
& 0=x^{2}+6 x+8 \\
& 0=(x+2)(x+4) \\
& x+2=0 \quad x+4=0 \\
& x_{1}=-2 \quad x_{2}=-4
\end{aligned}
$$

b) Determine the vertex using the x-intercepts

$$
\begin{aligned}
& x-\text { vertex }=\frac{-2+(-4)}{2}=\frac{-6}{2}=-3 \\
& y-\text { vertex }=(-3)^{2}+6(-3)+8=-1
\end{aligned}
$$

$$
\text { the vertex is }(-3,-1)
$$

c) Convert to vertex form by completing the square

$$
\begin{aligned}
& y=\left(x^{2}+6 x\right)+8 \\
& y=\left(x^{2}+6 x+9-9\right)+8 \\
& y=\left(x^{2}+6 x+9\right)-9+8 \\
& y=(x+3)^{2}-1
\end{aligned}
$$

d) Solve for the x-intercepts by rearranging the vertex form equation to isolate for x.

$$
\begin{aligned}
0 & =(x+3)^{2}-1 \\
1 & =(x+3)^{2} \\
\pm \sqrt{1} & =x+3 \\
-3 \pm \sqrt{1} & =x
\end{aligned}
$$

A quadratic equation in standard form, $0=a x^{2}+b x+c$, can be solved for x by first converting into vertex form, $0=a(x-h)^{2}+k$, by completing the square, then rearranging to isolate for x.

Part 2: Rational Solutions

Example 2: Solve each of the following equations by completing the square.
a) $0=x^{2}-12 x+20$
$0=\left(x^{2}-12 x+36-36\right)+20$
$0=\left(x^{2}-12 x+36\right)-36+20$
$0=(x-6)^{2}-16$
$16=(x-6)^{2}$
$\pm \sqrt{16}=x-6$
$x=6 \pm 4$
$x_{1}=6+4 \quad x_{2}=6-4$
$x_{1}=10 \quad x_{2}=2$
b) $10=2 x^{2}-x$
$0=2 x^{2}-x-10$
$0=2\left(x^{2}-\frac{1}{2} x\right)-10$
$0=2\left(x^{2}-\frac{1}{2} x+\frac{1}{16}-\frac{1}{16}\right)-10$
$0=2\left(x^{2}-\frac{1}{2} x+\frac{1}{16}\right)-\frac{1}{8}-\frac{80}{8}$
$0=2\left(x-\frac{1}{4}\right)^{2}-\frac{81}{8}$
$\frac{\left(\frac{81}{8}\right)}{2}=\left(x-\frac{1}{4}\right)^{2}$
$\pm \sqrt{\frac{81}{16}}=x-\frac{1}{4}$
$\int \frac{1}{4} \pm \frac{9}{4}=x$
$\begin{array}{ll}x_{1}=\frac{1}{4}+\frac{9}{4} & x_{2}=\frac{1}{4}-\frac{9}{4} \\ x_{1}=\frac{10}{4} & x_{2}=\frac{-8}{4} \\ x_{1}=\frac{5}{2} & x_{2}=-2\end{array}$

Notice for each of the equations in this question there were RATIONAL solutions. That means that each of the equations could have been solved by factoring.

Part 3: Irrational Solutions

Example 3: Solve each of the following quadratic equations by completing the square.
a) $-3 x^{2}+6 x+7=0$
b) $x^{2}-6 x-8=0$
$-3\left(x^{2}-2 x\right)+7=0$
$\left(x^{2}-6 x\right)-8=0$
$-3\left(x^{2}-2 x+1-1\right)+7=0$
$\left(x^{2}-6 x+9-9\right)-8=0$
$-3\left(x^{2}-2 x+1\right)+3+7=0$
$\left(x^{2}-6 x+9\right)-9-8=0$
$-3(x-1)^{2}+10=0$

$$
(x-3)^{2}-17=0
$$

$$
(x-1)^{2}=\frac{-10}{-3}
$$

$$
(x-3)^{2}=17
$$

$$
x-1= \pm \sqrt{\frac{10}{3}}
$$

$$
x-3= \pm \sqrt{17}
$$

$$
x=1 \pm \sqrt{\frac{10}{3}}
$$

$$
x=3 \pm \sqrt{17}
$$

$$
x_{1}=1+\sqrt{\frac{10}{3}} \quad x_{2}=1-\sqrt{\frac{10}{3}}
$$

Exact
$x_{1} \simeq 2.83 \quad x_{2} \simeq-0.83$ Approximate

$x_{1}=3+\sqrt{17}$	$x_{2}=3-\sqrt{17}$	Exact
$x_{1} \simeq 7.12$	$x_{2} \simeq-1.12$	Approximate

Notice for each of the equations in this question there were only IRRATIONAL solutions. That means that each of the equations could NOT have been solved by factoring. This is why solving by completing the square is a useful strategy.

Part 4: Non-Real Solutions

Example 4: Solve the following quadratic equation

$$
\begin{aligned}
& x^{2}-6 x+10=0 \\
& \left(x^{2}-6 x+9-9\right)+10=0 \\
& \left(x^{2}-6 x+9\right)-9+10=0 \\
& (x-3)^{2}+1=0 \\
& (x-3)^{2}=-1 \\
& x-3= \pm \sqrt{-1} \\
& x=3 \pm \sqrt{-1} \begin{array}{c}
\text { not a real } \\
\text { number }
\end{array} \\
& \text { or no real solutions. }
\end{aligned}
$$

Notice that not all quadratics have REAL solutions.

Part 5: Application

Example 5: For the quadratic $y=2 x^{2}-5 x+3$, determine the vertex, x-intercepts, and then sketch a graph of the function.

$$
\begin{aligned}
& 0=2 x^{2}-5 x+3 \quad-2 x-3=6 \\
& 0=2 x^{2}-2 x-3 x+3 \quad-2+-3=-5 \\
& 0=2 x(x-1)-3(x-1) \\
& 0=(x-1)(2 x-3) \\
& x-1=0 \quad 2 x-3=0 \\
& \begin{array}{l}
x_{1}=1 \quad 2 x=3 \\
x_{2}=\frac{3}{2}=1.5
\end{array} \\
& x \text {-vertex }=\frac{1+1.5}{2}=1.25 \\
& y \text {-vertex }=2(1.25)^{2}-5(1.25)+3 \\
& =-0 c 125 \\
& \text { vertex }(1.25,-0.125)
\end{aligned}
$$

