L3 -Solving Quadratics using the Quadratic Formula MPM2D

Unit 5

Part 1: Proof of Quadratic Formula

The quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

is a formula that can be used to find rational, irrational, and non-real solutions to any quadratic equation that is in the form $ax^2 + bx + c = 0$. It is a formula that is derived from completing the square of a general standard form quadratic and then rearranging to isolate for x. Using the formula is just a shortcut to avoid having to complete the square and rearrange like we did last lesson.

Proof:

Jensen

Part 2: Rational Solutions

Example 2: Solve each of the following equations using the Quadratic Formula.

a)
$$0 = x^2 - 7x + 12$$

b)
$$0 = 3x^2 + 11x - 4$$

c)
$$-9 = x^2 - 6x$$

Part 3: Irrational Solutions

Evami	10.2.	Calva	aach	of tha	following	auadratic	equations
Examp	JIE 3.	JUIVE	eacii	oi tile	TOHOWING	quauratic	equations

a)
$$0 = 3x^2 + 8x - 5$$

b)
$$-5 = -x^2 - 10x$$

Notice for each of the equations in this question there were only ______ solutions. That means that each of the equations could NOT have been solved by factoring. This is why the Quadratic formula is so useful!

Part 4: Non-Real Solutions

Example 4: Solve each of the following quadratic equations

a)
$$0 = x^2 - 5x + 11$$

b)
$$-7 = 2x^2 - 4x$$

There are no real solutions when under the square root (the discriminant) is ______. You can't square root a negative!

Part 5: The Discriminant

Looking back through the previous parts of the lesson, you can see that quadratic equations can have either zero, one, or two solutions. The discriminant, $b^2 - 4ac$, is the part of the equation that tells you how many solutions a quadratic equation will have.

# of solutions	0	1	2
Discriminant	$b^2 - 4ac < 0$	$b^2 - 4ac = 0$	$b^2 - 4ac > 0$
	$0 = x^{2} - 5x + 11$ $x = \frac{5 \pm \sqrt{(-5)^{2} - 4(1)(11)}}{2(1)}$	$0 = x^2 - 6x + 9$ $x = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(9)}}{2(1)}$	$0 = 3x^{2} + 8x - 5$ $x = \frac{-8 \pm \sqrt{(8)^{2} - 4(3)(-5)}}{2(3)}$
Example Equation	$x = \frac{5 \pm \sqrt{-19}}{2}$	$x = \frac{6 \pm \sqrt{0}}{2(1)}$	$x = \frac{-8 \pm \sqrt{124}}{6}$ $x = -3.19, 0.52$
	No real solutions	x = 3	x = -3.19, 0.52
	Notice $b^2 - 4ac = -19$ which is less than zero	Notice $b^2 - 4ac = 0$	Notice $b^2 - 4ac = 124$ which is greater than zero
Example Graph	20 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 2 3 4 5 6 1 1 2 2 3 4 5 6 1 1 1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 4 3 - 2 - 1 0 1 2 3 2 4 4
	Notice the graph never	Notice the vertex is ON	Notice the graph crosses
	crosses the x -axis	the <i>x</i> -axis	through the x-axis twice

Example 5: How many real solutions does each quadratic equation have?

a)
$$0 = x^2 + 10x + 25$$

a)
$$0 = x^2 + 10x + 25$$
 b) $0 = -2x^2 + 2x + 7$ c) $0 = 2x^2 + 2x + 7$

c)
$$0 = 2x^2 + 2x + 7$$

Another piece of useful information about the discriminant:

If $b^2 - 4ac$ is a number, you will get rational solutions which means the quadratic is factorable. If you aren't sure if a quadratic is factorable, just check to see if $b^2 - 4ac$ is a perfect square number (0,1,4,9,16,25,36, ...)