L3 -Solving Quadratics using the Quadratic Formula Unit 5
, MPM2D
; Jensen

Part 1: Proof of Quadratic Formula

The quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

is a formula that can be used to find rational, irrational, and non-real solutions to any quadratic equation that is in the form $a x^{2}+b x+c=0$. It is a formula that is derived from completing the square of a general standard form quadratic and then rearranging to isolate for x. Using the formula is just a shortcut to avoid having to complete the square and rearrange like we did last lesson.

Proof:

Part 2: Rational Solutions

Example 2: Solve each of the following equations using the Quadratic Formula.
a) $0=x^{2}-7 x+12$
b) $0=3 x^{2}+11 x-4$
c) $-9=x^{2}-6 x$
\qquad solutions. That means that each of the equations could have been solved by factoring. But quadratic formula also works!

Part 3: Irrational Solutions

Example 3: Solve each of the following quadratic equations
a) $0=3 x^{2}+8 x-5$
b) $-5=-x^{2}-10 x$

Notice for each of the equations in this question there were only \qquad solutions. That means that each of the equations could NOT have been solved by factoring. This is why the Quadratic formula is so useful!

Part 4: Non-Real Solutions

Example 4: Solve each of the following quadratic equations
a) $0=x^{2}-5 x+11$
b) $-7=2 x^{2}-4 x$
\qquad . You can't square root a negative!

Part 5: The Discriminant

Looking back through the previous parts of the lesson, you can see that quadratic equations can have either zero, one, or two solutions. The discriminant, $b^{2}-4 a c$, is the part of the equation that tells you how many solutions a quadratic equation will have.

\# of solutions	0	1	2
Discriminant	$b^{2}-4 a c<0$	$b^{2}-4 a c=0$	$b^{2}-4 a c>0$
Example Equation	$\begin{gathered} 0=x^{2}-5 x+11 \\ x=\frac{5 \pm \sqrt{(-5)^{2}-4(1)(11)}}{2(1)} \\ x=\frac{5 \pm \sqrt{-19}}{2} \end{gathered}$ No real solutions Notice $b^{2}-4 a c=-19$ which is less than zero	$\begin{gathered} 0=x^{2}-6 x+9 \\ x=\frac{6 \pm \sqrt{(-6)^{2}-4(1)(9)}}{2(1)} \\ x=\frac{6 \pm \sqrt{0}}{2(1)} \\ x=3 \\ \text { Notice } \\ b^{2}-4 a c=0 \end{gathered}$	$\begin{gathered} 0=3 x^{2}+8 x-5 \\ x=\frac{-8 \pm \sqrt{(8)^{2}-4(3)(-5)}}{2(3)} \\ x=\frac{-8 \pm \sqrt{124}}{6} \\ x=-3.19,0.52 \end{gathered}$ Notice $b^{2}-4 a c=124$ which is greater than zero
Example Graph	 Notice the graph never crosses the x-axis	 Notice the vertex is ON the x-axis	 Notice the graph crosses through the x-axis twice

Example 5: How many real solutions does each quadratic equation have?
a) $0=x^{2}+10 x+25$
b) $0=-2 x^{2}+2 x+7$
c) $0=2 x^{2}+2 x+7$

Another piece of useful information about the discriminant:

If $b^{2}-4 a c$ is a \qquad number, you will get rational solutions which means the quadratic is factorable. If you aren't sure if a quadratic is factorable, just check to see if $b^{2}-4 a c$ is a perfect square number ($0,1,4,9,16,25,36, \ldots$)

