Jensen

Part 1: Proof of Quadratic Formula

The quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

is a formula that can be used to find rational, irrational, and non-real solutions to any quadratic equation that is in the form $ax^2 + bx + c = 0$. It is a formula that is derived from completing the square of a general standard form quadratic and then rearranging to isolate for x. Using the formula is just a shortcut to avoid having to complete the square and rearrange like we did last lesson.

Proof:

$$a\chi^{2} + b\chi + c = 0$$

$$a(\chi^{2} + \frac{b}{a}\chi) + c = 0$$

$$a(\chi^{2} + \frac{b}{a}\chi) + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}}) + c = 0$$

$$a(\chi^{2} + \frac{b}{a}\chi) + \frac{b^{2}}{4a^{2}} - \frac{ab^{2}}{4a^{2}} + c = 0$$

$$a(\chi + \frac{b}{aa})^{2} = \frac{b^{2}}{4a} - \frac{c}{1} \times \frac{4a}{4a}$$

$$a(\chi + \frac{b}{aa})^{2} = \frac{b^{2} - 4ac}{4a}$$

$$(\chi + \frac{b}{aa})^{2} = \frac{b^{2} - 4ac}{4a}$$

$$\chi + \frac{b}{aa} = \frac{b^{2} - 4ac}{4a^{2}}$$

$$\chi = \frac{-b}{4a^{2}} + \frac{4b^{2} - 4ac}{4a^{2}}$$

$$\chi = \frac{-b}{2a} + \frac{4b^{2} - 4ac}{2a}$$

$$\chi = -\frac{b}{2a} + \frac{4b^{2} - 4ac}{2a}$$

$$\chi = -\frac{b}{2a} + \frac{4b^{2} - 4ac}{2a}$$

Part 2: Rational Solutions

Example 2: Solve each of the following equations using the Quadratic Formula.

a)
$$0 = |x^{2} - 7x + 12$$

 $x = \frac{7 \pm \sqrt{(-7)^{2} - 4(1)(12)}}{2(1)}$
 $x = 7 \pm \sqrt{1}$
 $x = \frac{7 \pm \sqrt{1}}{2(1)}$
 $x = 7 \pm \sqrt{1}$
 $x = \frac{7 \pm \sqrt{1}}{2}$
 $x_{1} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{2} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{1} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{2} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{1} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{2} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{1} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{2} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{1} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{2} = \frac{7 \pm \sqrt{1}}{2}$
 $x_{1} = -\frac{1}{2}$
 $x_{1} = \frac{2}{6}$
 $x_{2} = -\frac{24}{6}$
 $x_{2} = -\frac{24}{6}$
 $x_{3} = -\frac{24}{6}$

c)
$$-9 = x^{2} - 6x$$

 $0 = 1x^{2} - 6x + 9 = 0$
 $\chi = 6 \pm \sqrt{160^{2} - 4(1)(9)}$
 $z(1)$
 $\chi = 6 \pm \sqrt{0}$
 $\chi = \frac{6}{2}$
 $\chi = 3$

Notice for each of the equations in this question there were **<u>RATIONAL</u>** solutions. That means that each of the equations could have been solved by factoring. But quadratic formula also works!

Part 3: Irrational Solutions

Example 3: Solve each of the following quadratic equations

a)
$$0 = 3x^{2} + 8x - 5$$

 $\chi = -8 \pm \sqrt{(8)^{2} - 4(3)(-5)}$
 $\chi = -8 \pm \sqrt{(8)^{2} - 4(3)(-5)}$
 $\chi = -8 \pm \sqrt{(8)^{2} - 4(3)(-5)}$
 $\chi = -10 \pm \sqrt{(0)^{2} - 4(1)(-5)}$
 $\chi = -10 \pm \sqrt{(0)^{2} - 4(1)$

Notice for each of the equations in this question there were only **IRRATIONAL** solutions. That means that each of the equations could NOT have been solved by factoring. This is why the Quadratic formula is so useful!

Part 4: Non-Real Solutions

Example 4: Solve each of the following quadratic equations

a)
$$0 = |x^{2} - 5x + 11$$

$$\chi = 5 \pm \sqrt{(-5)^{2} - 4(1)(1)}$$

$$\chi = 5 \pm \sqrt{(-5)^{2} - 4(1)(1)}$$

$$\chi = 1 \pm \sqrt{(-5)^{2} - 4(1)(1)}$$

$$\chi = 4 \pm \sqrt{(-4)^{2} - 4(2)(7)}$$

$$\chi =$$

There are no real solutions when under the square root (the discriminant) is <u>less than zero</u>. You can't square root a negative!

Part 5: The Discriminant

Looking back through the previous parts of the lesson, you can see that quadratic equations can have either zero, one, or two solutions. The discriminant, $b^2 - 4ac$, is the part of the equation that tells you how many solutions a quadratic equation will have.

# of solutions	0	1	2
Discriminant	$b^2 - 4ac < 0$	$b^2 - 4ac = 0$	$b^2 - 4ac > 0$
	$0 = x^2 - 5x + 11$	$0 = x^2 - 6x + 9$	$0 = 3x^2 + 8x - 5$ $-8 \pm \sqrt{(8)^2 - 4(3)(-5)}$
	$x = \frac{5 \pm \sqrt{(-5)^2 - 4(1)(11)}}{2(1)}$	$x = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(9)}}{2(1)}$	$x = \frac{-8 \pm \sqrt{(8)^2 - 4(3)(-5)}}{2(3)}$
Example Equation	$x = \frac{5 \pm \sqrt{-19}}{2}$	$x = \frac{6 \pm \sqrt{0}}{2(1)}$	$x = \frac{-8 \pm \sqrt{124}}{6}$
	No real solutions	x = 3	x = -3.19, 0.52
	Notice $b^2 - 4ac = -19$ which is less than zero	Notice $b^2 - 4ac = 0$	Notice $b^2 - 4ac = 124$ which is greater than zero
Example Graph			
	Notice the graph never	Notice the vertex is ON	Notice the graph crosses
	crosses the <i>x</i> -axis	the <i>x</i> -axis	through the <i>x</i> -axis twice

Example 5: How many real solutions does each quadratic equation have?

a) $0 = x^{2} + 10x + 25$	b) $0 = -2x^2 + 2x + 7$	c) $0 = 2x^2 + 2x + 7$
$b^{2} - 4ac = 100 - 4(1)(25)$ = 0	$b^{2} - 4ac = (2)^{2} - 4(-2)(7)$ = 60	$b^{2} - 4ac = (2)^{2} - 4(2)(7)$ = -52
1 real solution	2 real solutions	() real solutions

Another piece of useful information about the discriminant:

If $b^2 - 4ac$ is a **PERFECT SQUARE** number, you will get rational solutions which means the quadratic is factorable. If you aren't sure if a quadratic is factorable, just check to see if $b^2 - 4ac$ is a perfect square number (0,1,4,9,16,25,36, ...)