```
L4 -Quadratics in Standard Form
Unit 5
MPM2D
; Jensen
```


## Part 1: Vertex from Standard Form Quadratic

Remember that parabolas are symmetrical about the axis of symmetry which is a vertical line that passes through the vertex. Because of this symmetry property, you can find the $x$-coordinate of the vertex by averaging the $x$-intercepts.

From quadratic formula we know that the $x$-intercepts of a standard form quadratic are

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Therefore, the $x$-coordinate of the vertex is:

## Conclusion:

From the standard form equation of a quadratic, $y=a x^{2}+b x+c$, you can determine the $x$-coordinate of the vertex using the formula:

$$
x-\text { vertex }=
$$

Example 1: Find the vertex of the following quadratics
a) $y=x^{2}-6 x+11$
b) $y=-3 x^{2}+2 x-1$

## Part 2: Putting it all together

Example 2: For the quadratic $y=-5 x^{2}+8 x-3$
a) Find the $x$-intercepts
b) Find the axis of symmetry
c) Find the vertex
d) Sketch the graph labelling key points


Example 3: For the quadratic $y=2 x^{2}-8 x+11$
a) Find the $x$-intercepts
b) Find the axis of symmetry
c) Find the vertex
d) Sketch the graph labelling key points


Example 4: For the quadratic $y=x^{2}-10 x+25$
a) Find the $x$-intercepts
b) Find the axis of symmetry
c) Find the vertex
d) Sketch the graph labelling key points


