L4 –Quadratics in Standard Form	Unit 5
MPM2D	1
¦ Jensen	1
L	

Part 1: Vertex from Standard Form Quadratic

Remember that parabolas are symmetrical about the axis of symmetry which is a vertical line that passes through the vertex. Because of this symmetry property, you can find the *x*-coordinate of the vertex by averaging the *x*-intercepts.

From quadratic formula we know that the *x*-intercepts of a standard form quadratic are

$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \text{ and } x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Therefore, the *x*-coordinate of the vertex is:

Conclusion:

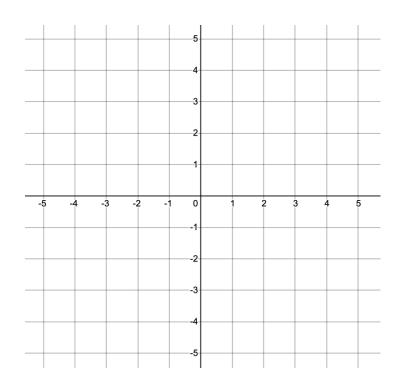
From the standard form equation of a quadratic, $y = ax^2 + bx + c$, you can determine the *x*-coordinate of the vertex using the formula:

$$x - vertex =$$

Example 1: Find the vertex of the following quadratics

a) $y = x^2 - 6x + 11$ b) $y = -3x^2 + 2x - 1$

Part 2: Putting it all together

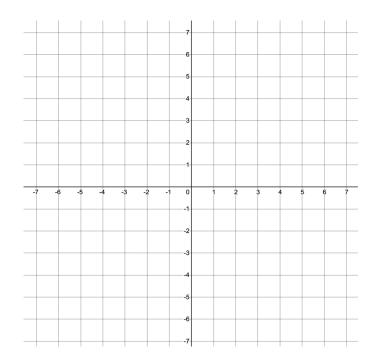

Example 2: For the quadratic $y = -5x^2 + 8x - 3$

a) Find the *x*-intercepts

b) Find the axis of symmetry

c) Find the vertex

d) Sketch the graph labelling key points

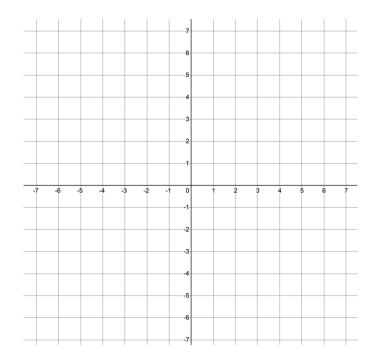

Example 3: For the quadratic $y = 2x^2 - 8x + 11$

a) Find the *x*-intercepts

b) Find the axis of symmetry

c) Find the vertex

d) Sketch the graph labelling key points


Example 4: For the quadratic $y = x^2 - 10x + 25$

a) Find the *x*-intercepts

b) Find the axis of symmetry

c) Find the vertex

d) Sketch the graph labelling key points

