Part 1: Vertex from Standard Form Quadratic

Remember that parabolas are symmetrical about the axis of symmetry which is a vertical line that passes through the vertex. Because of this symmetry property, you can find the x-coordinate of the vertex by averaging the x-intercepts.

From quadratic formula we know that the x-intercepts of a standard form quadratic are

$$
x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a} \text { and } x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Therefore, the x-coordinate of the vertex is:

$$
\begin{aligned}
x-\text { vertex } & =\frac{\left(\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}+\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}\right)}{2} \\
& =\frac{\left(\frac{-2 b}{2 a}\right)}{\left(\frac{2}{1}\right)} \\
& =\frac{-b}{a} \times \frac{1}{2} \\
& =\frac{-b}{2 a}
\end{aligned}
$$

Conclusion:

From the standard form equation of a quadratic, $y=a x^{2}+b x+c$, you can determine the x-coordinate of the vertex using the formula:

$$
x-\text { vertex } x=\frac{-b}{2 a}
$$

Example 1: Find the vertex of the following quadratics
a) $y=x^{2}-6 x+11$ x-vertex $=\frac{6}{2(1)}=3$
b) $y=-3 x^{2}+2 x-1$

$$
y \text {-vertex }=(3)^{2}-6(3)+11
$$

$$
=2
$$

$$
(3,2)
$$

$$
\begin{aligned}
& x \text {-vertex }=\frac{-2}{2(-3)}=\frac{-2}{-6}=\frac{1}{3} \\
& \begin{aligned}
& y \text {-voter }=-3\left(\frac{1}{3}\right)^{2}+2\left(\frac{1}{3}\right)-1 \\
&=-\frac{2}{3} \\
&\left(\frac{1}{3},-\frac{2}{3}\right)
\end{aligned}
\end{aligned}
$$

Part 2: Putting it all together
Example 2: For the quadratic $y=-5 x^{2}+8 x-3$
a) Find the x-intercepts
b) Find the axis of symmetry
c) Find the vertex
d) Sketch the graph labelling key points

$$
\begin{aligned}
& \text { a) } 0=-5 x^{2}+8 x-3 \quad \leq \quad 5 \quad 3=15 \\
& 0=-5 x^{2}+5 x+3 x-3 \quad 5+3=8 \\
& 0=-5 x(x-1)+3(x-1) \\
& x=0.8 \\
& 0=(x-1)(-5 x+3) \\
& x-1=0 \quad-5 x+3=0 \\
& \text { c) } \\
& x \text {-vertex }=0.8 \\
& x=1 \\
& 3=5 x \\
& \frac{3}{5}=x \\
& \text { b) os: } x=\frac{1+0.6}{2} \\
& \begin{aligned}
y \text {-vertex } & =-5(0.8)^{2}+8(0.8)-3 \\
& =0.2
\end{aligned} \\
& (0.8,0.2)
\end{aligned}
$$

Example 3: For the quadratic $y=2 x^{2}-8 x+11$
a) Find the x-intercepts
b) Find the axis of symmetry
c) Find the vertex
d) Sketch the graph labelling key points
a)

$$
\begin{aligned}
& 0=2 x^{2}-8 x+11 \\
& x=\frac{8 \pm \sqrt{(-8)^{2}-4(2)(11)}}{2(2)} \\
& x=\frac{8 \pm \sqrt{-24}}{4}
\end{aligned}
$$

oo no x-intercepts
b) $\operatorname{aos}: x=\frac{8}{2(2)}$
$x=2$
c)

$$
\begin{aligned}
x \text {-vertex } & =2 \\
y \text {-vertex } & =2(2)^{2}-8(2)+11 \\
& =3
\end{aligned}
$$

$(2,3)$

Example 4: For the quadratic $y=x^{2}-10 x+25$
a) Find the x-intercepts
b) Find the axis of symmetry
c) Find the vertex
d) Sketch the graph labelling key points

$$
\text { a) } \begin{array}{ll}
0=x^{2}-10 x+25 & \frac{-5}{-5} \times-\frac{5}{-5}=25 \\
0=(x-5)^{2} & -10 \\
x-5=0 \\
x=5
\end{array}
$$

$$
\text { 10) aus: } x=\frac{10}{2(1)}
$$

$$
x=5
$$

C)

$$
\begin{aligned}
& x \text {-vertex }=5 \\
& y \text {-vertex }=(5)^{2}-10(5)+25
\end{aligned}
$$

Note: when a quadratic only has 1 x-intercept, the vertex must be on the x-axis.

