Example 1: The equation $h(t)=-4.9 t^{2}+60 t+3$ represents the path of a rocket where h is height in meters and t is time in seconds after is has been launched.
a) What is the height of the rocket when it is launched?
b) How long does it take the rocket to land on the ground?
c) What is the maximum height of the rocket?
d) When is the rocket 4 meters above the ground?
a) $h(0)=-4.9(0)^{2}+60(0)+3$

$$
h(0)=3
$$

$$
\text { The height at launch is } 3 \text { meters }
$$

b) $0=-4.9 t^{2}+60 t+3$

$$
t=\frac{-60 \pm \sqrt{(68)^{2}-4(-4.9)(3)}}{2(-4.9)}
$$

$$
t=\frac{-60 \pm \sqrt{3658.8}}{-9.8}
$$

$$
t=\rightarrow 05 \quad t=12.29 \text { seconds }
$$

c) x-vertex $=\frac{-60}{2(-4.9)}=6.12$
y-vertex $=-4.9(6.12)^{2}+60(6.12)+3=186.7$

$$
\text { The max height is } 186.7 \mathrm{~m}
$$

$$
\text { d) } \begin{aligned}
4 & =-4.9 t^{2}+60 t+3 \\
0 & =-4.9 t^{2}+60 t-1 \\
t & =\frac{-60 \pm \sqrt{(60)^{2}-4(-4.9)(-1)}}{2(-4.9)} \\
t & =\frac{-60 \pm \sqrt{3580.4}}{-9.8} \\
t & =12.23 \text { and } 0.02 \text { seconds }
\end{aligned}
$$

Example 2: One leg of a right triangle is 1 cm longer than the other leg. The length of the hypotenuse is 9 cm greater than that of the shorter leg. Find the length of the three sides.

$$
\begin{aligned}
& x^{2}+(x+1)^{2}=(x+9)^{2} \\
& x^{2}+x^{2}+2 x+1=x^{2}+18 x+81 \\
& x^{2}-16 x-80=0 \quad \frac{-20}{-20}+\frac{4}{4}=-80 \\
& (x-20)(x+4)=0 \quad-16 \\
& x-20=0 \quad x+4=0 \\
& x=20 \quad x-4
\end{aligned}
$$

The side lengths are 20,21, and 29 cm .

Example 3: The length of a rectangle is 16 cm greater than its width. The area is $35 \mathrm{~cm}^{2}$. Find the dimensions of the rectangle.

$$
\begin{array}{ll}
\begin{array}{ll}
\text { width }=x \\
\text { length }=x+16
\end{array} & \begin{aligned}
\text { Area } & =\text { length } \times \text { width } \\
35 & =(x+16)(x) \\
35 & =x^{2}+16 x \\
0 & =x^{2}+16 x-35
\end{aligned} \\
x=\frac{-16 \pm \sqrt{(16)^{2}-4(1)(-35)}}{2(1)} \\
x=\frac{-16 \pm \sqrt{396}}{2} \\
x=1.95 \\
\text { length } \\
x+16
\end{array} \quad \begin{aligned}
\text { width } \\
x
\end{aligned}
$$

Example 4: The path of a soccer ball after it is kicked from a height of 0.5 meters above the ground is given by the equation $h(d)=-0.1 d^{2}+d+0.5$, where h is the height in meters, and d is the horizontal distance in meters.
a) How far has the soccer ball travelled horizontally when it lands on the ground?
b) Find the horizontal distance when the soccer ball is at a height of 2.6 meters above the ground.
c) What is the max height of the ball?

$$
\text { a) } \begin{aligned}
0 & =-0.1 d^{2}+d+0.5 \\
0 & =-0.1\left(d^{2}-10 d-5\right) \\
0 & =d^{2}-10 d-5 \\
d & =\frac{10 \pm \sqrt{(-10)^{2}-4(1)(-5)}}{2(1)} \\
d & =\frac{10 \pm \sqrt{120}}{2} \\
d & =10.48 \mathrm{~m} d \geqslant+0.48
\end{aligned}
$$

$$
\begin{aligned}
& \text { It travels } 10.48 \mathrm{n} \text { horizontally before } \\
& \text { landing. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } 2.6=-0.1 d^{2}+d+0.5 \\
& 0=-\sigma_{e}\left|d^{2}+d-2_{e}\right| \\
& O=-O_{e} 1\left(d^{2}-10 d+21\right) \\
& O=d^{2}-|0 d+2| \\
& 0=(d-3)(d-7) \\
& d_{1}=3 \quad d_{2}=7 \\
& \text { It's at a height of } 2.6 n \text { weer it } 15 \text { at } \\
& \text { a harroatal distance of } 3 \mathrm{n} \text { and } 7 \mathrm{~m} \text {. } \\
& \text { c) } x \text {-vertex }=\frac{-1}{2(-0.0)}=5 \\
& y \text {-vertex }=-0.1(5)^{2}+5+0.5=3 \\
& \text { The max height is } 3 \mathrm{~m}
\end{aligned}
$$

Example 5: A sporting goods store sells 90 ski jackets in a season for $\$ 200$ each. Each $\$ 10$ decrease in the price would result in five more jackets being sold. At what price should they sell the jackets in order to obtain a maximum revenue? What is the max revenue?

